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Abstract
Abundance	estimation	 is	 frequently	an	objective	of	conservation	and	monitoring	
initiatives	for	threatened	and	other	managed	populations.	While	abundance	esti-
mation	via	capture–mark–recapture	or	spatially	explicit	capture–recapture	is	now	
common,	 such	 approaches	 are	 logistically	 challenging	 and	 expensive	 for	 species	
such	as	boreal	caribou	(Rangifer tarandus),	which	inhabit	remote	regions,	are	widely	
dispersed,	and	exist	at	low	densities.	Fortunately,	the	recently	developed	‘close-	kin	
mark–recapture’	(CKMR)	framework,	which	uses	the	number	of	kin	pairs	obtained	
within	a	sample	to	generate	an	abundance	estimate,	eliminates	the	need	for	multi-
ple	sampling	events.	As	a	result,	some	caribou	managers	are	interested	in	using	this	
method	to	generate	an	abundance	estimate	 from	a	single,	non-	invasive	sampling	
event	 for	 caribou	 populations.	We	 conducted	 a	 simulation	 study	 using	 realistic	
boreal	caribou	demographic	rates	and	population	sizes	to	assess	how	population	
size	and	the	proportion	of	the	population	surveyed	impact	the	accuracy	and	preci-
sion	of	single-	survey	CKMR-	based	abundance	estimates.	Our	results	indicated	that	
abundance	estimates	were	biased	 and	highly	 imprecise	when	very	 small	 propor-
tions	of	the	population	were	sampled,	regardless	of	the	population	size.	However,	
the	larger	the	population	size,	the	smaller	the	required	proportion	of	the	population	
surveyed	to	generate	both	accurate	and	reasonably	precise	estimates.	Additionally,	
we	 also	present	 a	 case	 study	 in	which	we	used	 the	CKMR	 framework	 to	 gener-
ate	 annual	 female	 abundance	 estimates	 for	 a	 small	 caribou	 population	 in	 Jasper	
National	Park,	Alberta,	Canada,	from	2006	to	2015	and	compared	them	to	existing	
published	 capture–mark–recapture-	based	 estimates.	Both	 the	 accuracy	 and	pre-
cision	 of	 the	 annual	 CKMR-	based	 abundance	 estimates	 varied	 across	 years	 and	
were	sensitive	to	the	proportion	of	pairwise	kinship	comparisons	which	yielded	a	
mother–offspring	pair.	Taken	together,	our	study	demonstrates	that	it	is	possible	to	
generate	CKMR-	based	abundance	estimates	from	a	single	sampling	event	for	small	
caribou	populations,	so	long	as	a	sufficient	sampling	intensity	can	be	achieved.
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1  |  INTRODUC TION

Sound	 wildlife	 management	 and	 conservation	 rest	 on	 having	
reliable	 estimates	 of	 demographic	 parameters,	 including	 abun-
dance	and	its	trend,	to	guide	policy	and	decision	making	(Nichols	
&	Williams,	 2006;	Williams	 et	 al.,	2002).	 Beyond	 simply	 inform-
ing	on	the	current	state	of	the	population,	such	demographic	 in-
formation	 can	 also	 help	 managers	 understand	 and	 predict	 how	
populations	 respond	 to	 stressors	 such	 as	 climate	 change	 (Lee	
et al., 2016;	 Wagner	 et	 al.,	 2023),	 anthropogenic	 disturbance	
(Palacios	et	al.,	2022;	Wan	et	al.,	2022),	and	invasive	species	(Bell	
et al., 2021;	Marschall	&	Crowder,	1996).	For	more	than	60 years,	
ecologists	 and	 statisticians	 have	 worked	 to	 develop	 a	 suite	 of	
methods	 to	 estimate	 demographic	 parameters,	 abundance,	 and	
trend	 from	 capture–mark–recapture	 (CMR)	 data.	 While	 CMR-	
based	 methods	 have	 undoubtedly	 provided	 critical	 information	
on	many	 systems,	 such	approaches	have	proven	difficult	 to	em-
ploy	for	certain	species	(Balme	et	al.,	2009;	Hupman	et	al.,	2018; 
Noss	et	al.,	1996),	especially	those	such	as	boreal	caribou	(Rangifer 
tarandus),	which	inhabit	remote	regions,	are	widely	dispersed,	and	
exist	at	low	densities.

Both	 methodological	 and	 technological	 advances,	 coupled	
with	declining	costs	of	genetic	profiling,	led	to	the	rise	of	genetic	
mark–recapture	methods	(Luikart	et	al.,	2010),	often	utilizing	non-	
invasive	sampling	techniques	such	as	hair	snares	(Paetkau,	2003; 
Poole et al., 2001)	 or	 fecal	 collections	 (Hettinga	 et	 al.,	 2012; 
Mondol et al., 2009).	While	such	approaches	eliminate	 the	need	
for	 the	 physical	 capture	 and	 marking	 of	 individuals,	 they	 still	
necessitate	 sampling	 individuals	 repeatedly	 and	 therefore	 are	
subject	 to	 similar	 investments	 of	 time,	money,	 and	personnel	 as	
traditional	CMR	approaches.	However,	recent	statistical	advances	
now	allow	for	parameter	estimation	based	on	sampling	kin	pairs	
rather	 than	 recaptures	 of	 the	 same	 individual	 in	 a	 framework	
known	 as	 ‘close-	kin	mark–recapture’	 (CKMR;	Bravington,	 Skaug,	
&	Anderson,	2016;	Skaug,	2001),	thus	eliminating	the	need	for	re-
peated	sampling	events.

The	CKMR	approach	 is	analogous	to	traditional	CMR,	but	 in-
stead	of	relying	on	recaptures,	it	relies	on	capturing	closely	related	
kin,	such	as	parent–offspring	pairs,	or	half-	siblings.	The	basic	prin-
ciple	underlying	CKMR	is	that	the	probability	of	sampling	kin	pairs,	
which	can	be	assessed	through	their	genetic	profiles,	is	inversely	
proportional	to	the	population	size	(Skaug,	2001).	As	a	simple	mo-
tivating	example,	consider	a	population	in	which	all	adult	females	
give	birth	to	the	same	number	of	offspring,	on	average,	each	year.	
The	probability	that	any	randomly	sampled	 juvenile,	 j,	 is	 the	off-
spring	of	a	randomly	sampled	adult	female,	f,	is	simply	1/NF, where 

NF	 is	 the	adult	 female	abundance	alive	 in	 j's	 year	of	birth.	Using	
CKMR	 in	 most	 real	 systems	 requires	 accounting	 for	 additional	
complexities,	 such	as	variation	 in	expected	 reproductive	output,	
varying	 kinship	 relations,	 and	 uncertainty	 in	 kinship	 relations	
(Bravington,	Skaug,	&	Anderson,	2016),	but	the	basic	principle	re-
mains	the	same.

Although	 CKMR	 has	 only	 been	 employed	 in	 a	 single	 terres-
trial	 system	 thus	 far	 (Christmas	 Island	 flying	 fox	 [Pteropus na-
talis];	 Lloyd-	Jones	 et	 al.,	 2023),	 there	 is	 growing	 interest	 in	 this	
method	among	terrestrial	ecologists	and	wildlife	managers	(Conn	
et al., 2020;	 Larroque	&	 Balkenhol,	2023;	 Sévêque	 et	 al.,	2024; 
Sharma	et	al.,	2022).	Given	that	the	CKMR	approach	does	not	rely	
on	repeated	capture	events,	it	could	be	particularly	advantageous	
for	 species	which	are	difficult	 to	 survey	via	 traditional	CMR	ap-
proaches,	such	as	boreal	caribou.	Caribou	are	broadly	distributed	
across	much	of	the	Canadian	landscape,	exhibiting	large	variation	
in	ecology,	genetics,	behavior,	and	morphology	(COSEWIC,	2011).	
In	fact,	caribou	are	considered	the	most	widespread	and	variable	
of	all	Cervidae	species	(Geist,	1998).	The	Committee	on	the	Status	
of	Endangered	Wildlife	in	Canada	currently	recognizes	12	distinct	
and	 ecologically	 significant	 ‘Designatable	 Units’	 for	 caribou,	 al-
though	unique	local	herds	are	recognized	within	each	Designatable	
Unit	(COSEWIC,	2011).	The	local	herds	display	immense	variation	
in	population	 size,	with	 some	consisting	of	 fewer	 than	100	 indi-
viduals,	while	 others	 number	 over	 100,000.	Given	 the	 immense	
variation	 in	 herd	 size	 and	 the	 environs	 they	 inhabit,	 numerous	
estimation	 methods	 have	 been	 employed	 for	 different	 caribou	
herds	 including	 aerial	 surveys	 (Government	 of	 Nunavut,	 2021),	
CMR	(McFarlane	et	al.,	2018),	spatially	explicit	capture–recapture	
(SECR;	McFarlane	et	al.,	2022),	and	integrated	population	models	
(Moeller	et	al.,	2021).	Unfortunately,	 these	approaches	are	quite	
costly	as	a	result	of	considerable	flight	time	through	multiple	sur-
vey	events	 (CMR	and	SECR).	 Therefore,	 some	caribou	managers	
are	interested	in	using	CKMR	to	generate	an	abundance	estimate	
from	a	one-	time	sampling	event.	In	fact,	one-	time	surveys	have	al-
ready	been	conducted	or	are	otherwise	planning	to	be	conducted,	
in	 several	 caribou	 ranges,	with	CKMR-	based	 abundance	 estima-
tion	among	the	stated	objectives.

To	our	 knowledge,	CKMR	has	only	been	used	 in	 cases	where	
samples	have	been	collected	over	multiple	years,	thereby	allowing	
pairwise	comparisons	to	be	made	across	years,	thus	increasing	the	
number	of	pairwise	comparisons	which	result	 in	a	kinship	relation	
and	ultimately	improving	the	precision	of	the	resulting	abundance	
estimate.	While	 that	 is	 certainly	 the	 ideal	 scenario	 for	generating	
CKMR-	based	 abundance	 estimates,	 unfortunately,	 on-	the-	ground	
caribou	 monitoring	 is	 not	 necessarily	 so	 consistent.	 Due	 to	 the	
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large	expanse	over	which	caribou	occur,	and	the	high	costs	involved	
in	 their	 sampling,	 there	are	only	 so	many	herds	 that	 can	be	 sam-
pled	 in	 any	 given	 year;	 certain	 herds	 may	 be	 surveyed	 annually	
over	the	span	of	several	years,	while	others	may	only	be	surveyed	
once	 every	 5–10 years	 (depending	 on	 funding	 and	 management	
priorities).	 While	 it	 would	 be	 technically	 feasible	 to	 construct	 a	
multi-	year	CKMR	model	spanning	the	5–10 years	between	the	 in-
termittent	sampling	events,	given	that	the	average	caribou	lifespan	
is ~10 years,	 it	 is	 unlikely	 that	 there	 would	 be	many	mother–off-
spring	pairs	(our	current	focus)	found	between	the	sampling	years,	
and	therefore,	a	multi-	year	model	would	offer	little	to	no	improve-
ment	over	a	single-	year	model.	Fortunately,	for	small	populations,	
it	may	be	feasible	to	obtain	a	sufficient	number	of	kin	pairs	to	allow	
for	abundance	estimation	 from	a	single	sampling	event.	Here,	we	
consider	this	scenario	for	the	first	time	and	evaluate	the	feasibility	
of	using	CKMR	to	generate	an	abundance	estimate	from	just	a	sole,	
non-	invasive	sampling	event	occurring	in	only	a	single	year.

We	first	conduct	a	simulation	study	roughly	based	on	caribou	
demographic	rates	to	evaluate	the	accuracy	and	precision	of	the	
CKMR	abundance	 estimate	 from	a	 single,	 non-	invasive	 sampling	
event	 across	 a	 range	 of	 realistic	 population	 sizes	 and	 sampling	
intensities	 for	 boreal	 caribou.	 Intensive	 sampling	 of	 the	 sort	 of	
small	populations	considered	here	can	result	in	non-	independence	
among	 the	 pairwise	 kinship	 comparisons,	 thereby	 impacting	
the	 variance	 of	 the	 abundance	 estimate	 (Bravington,	 Skaug,	 &	
Anderson,	 2016;	 Skaug,	2017),	 and	 therefore,	 we	 also	 analyzed	
the	coverage	probability	(i.e.,	the	proportion	of	confidence	inter-
vals	containing	the	true	abundance	across	all	simulations)	of	calcu-
lated	95%	profile	confidence	intervals	of	the	abundance	estimate	
(for	a	single	parameter,	this	is	based	on	finding	the	two	points	on	
the	 likelihood	 surface	which	 are	 1.92 units	 away	 from	 the	maxi-
mum	value	of	the	log-	likelihood	function).	We	then	present	a	case	
study	using	genetic	data	from	previously	collected	fecal	samples	
in	which	we	use	 the	CKMR	pseudolikelihood	 to	estimate	annual	
adult	female	abundance	over	a	10-	year	period	for	a	small	(<100),	
intensively	 sampled	 mountain	 caribou	 population	 and	 compare	
the	CKMR	 abundance	 estimates	 to	 published	CMR-	based	 abun-
dance	estimates,	representing	only	the	second	use	of	CKMR	in	a	
real	terrestrial	system	(Lloyd-	Jones	et	al.,	2023).

2  |  METHODS

2.1  |  Caribou reproductive biology and fecal pellet 
collection

Female	caribou	typically	give	birth	to	their	first	calf	as	3-	year-	olds,	
although	a	small	number	become	pregnant	at	~16 months,	birthing	
for	the	first	time	as	2-	year-	olds	 (Adams	&	Dale,	1998a;	Eloranta	&	
Nieminen,	 1986).	 Caribou	 rutting	 season	 typically	 runs	 from	 late	
September	to	late	October,	followed	by	a	single,	synchronous	birth	
pulse	 in	 late	May	to	mid-	June	 (Adams	&	Dale,	1998b;	Dauphiné	Jr	
&	McClure,	1974).	Non-	invasive	fecal	pellet	collections	are	typically	

conducted	in	the	winter	months	from	late	December	to	early	March,	
when	snow	cover	allows	for	aerial	 identification	of	cratering	sites,	
while	also	helping	to	preserve	the	fecal	DNA.

2.2  |  Simulation study

Briefly,	 we	 constructed	 individual-	based,	 female-	only	 popula-
tion	 simulations	 based	 on	 realistic	 caribou	 demographic	 rates.	
We	explored	a	 range	of	 initial	population	sizes	 (58–1150),	and	the	
simulations	began	immediately	prior	to	the	summer	birth	pulse,	so	
1-	year-	olds	were	the	youngest	individuals	at	the	start	of	each	sim-
ulation.	We	 then	 simulated	 the	birth	of	 a	 single	 calf	 cohort,	 using	
stage-	specific	breeding	probabilities,	and	tracked	which	individuals	
gave	 birth	 to	which	 calves.	Given	 that	 caribou	 sampling	 generally	
occurs	in	the	winter	(6–8 months	after	the	births),	we	simulated	a	6-	
month	survival	process	for	all	individuals,	again	using	stage-	specific	
survival	probabilities.	Following	the	survival	process,	we	randomly	
sampled	between	5%	and	95%	of	 the	 surviving	population,	deter-
mined	how	many	mother–calf	pairs	were	contained	within	the	sam-
ple,	and	used	this	information	from	the	one-	time	sample	to	estimate	
the	reproductive	female	abundance	at	the	time	of	the	calf	cohort's	
birth.	Below,	we	further	elaborate	on	the	details	of	the	simulations.

The	 starting	population	 for	 each	 simulation	 consisted	of	 three	
stage-	classes:	 yearlings	 (1-	year-	olds),	 which	 are	 non-	reproductive,	
subadults	(2-	year-	olds),	and	adults	(3+-	year-	olds),	both	of	which	are	
reproductive;	no	calves	(age	0)	were	present	at	the	start	of	the	simu-
lations.	The	reproductive	portion	of	each	population	(subadults	and	
adults;	NF)	ranged	in	size	from	50	to	1000	females,	in	increments	of	
50,	with	subadults	accounting	for	12%	of	the	reproductive	individu-
als	and	adults	accounting	for	the	remaining	88%,	while	the	number	
of	yearlings	was	set	at	15%	of	the	total	number	of	reproductive	in-
dividuals.	Therefore,	total	initial	population	sizes	ranged	from	58	to	
1150	females.

Next,	 we	 used	 a	 Bernoulli	 distribution	 to	 determine	 whether	
each	female	successfully	bred,	with	the	breeding	probability	deter-
mined	by	each	 individual's	 stage-	class	 (see	Table 1	 for	 the	 full	 list	

TA B L E  1 Demographic	parameters	used	to	generate	the	
population	subjected	to	sampling	within	each	simulation.

Parameter Symbol Value

Numb	of	offspring	born	per	female	which	
reproduced

f 1

Yearling	breeding	probabilitya — 0

Subadult	breeding	probability bs .15

Adult	breeding	probability ba .90

Calf	6-	month	survival �c .35

Yearling	6-	month	survival �y .894

Subadult	6-	month	survival �s .894

Adult	6-	month	survival �a .922

aThis	parameter	is	not	actually	part	of	the	simulations	because	the	
probability	is	0,	but	we	include	here	for	completeness.
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of	 demographic	 rates	 used	 in	 the	 simulations).	 Females	 that	 bred	
successfully	produced	one	calf,	regardless	of	stage-	class,	consistent	
with	caribou	demography	(Bergerud,	2000),	and	we	tracked	which	
female	 produced	 each	 calf	within	 the	 simulation.	 Given	 that	 cari-
bou	sampling	often	occurs	 in	the	winter	months	(6–8 months	after	
the	 summer	 birth	 pulse),	we	 then	 used	 a	 Bernoulli	 distribution	 to	
simulate	 the	 survival	 process	 for	 ~6 months	 for	 all	 stage-	classes,	
where	the	survival	probability	was	determined	by	each	individual's	
stage-	class.	We	then	randomly	sampled	5%–95%	of	all	surviving	in-
dividuals,	in	5%	increments,	for	each	population	to	assess	the	impact	
of	 sampling	differing	proportions	of	 individuals	on	 the	abundance	
estimate.

Following	 sampling,	 all	 sampled	 yearlings	 were	 removed	 from	
consideration	for	the	subsequent	CKMR	analysis	because	they	are	
neither	calves	 (hence	not	part	of	 the	offspring	cohort	of	 interest),	
nor	are	they	capable	of	reproducing	yet	(hence	having	no	chance	of	
being	a	mother	to	the	current	calf	cohort).	As	a	result,	all	individu-
als	included	in	the	CKMR	analysis	as	potential	mothers	were	known	
to	be	 reproductive	at	 the	 time	of	 the	calf	 cohort's	birth.	We	 then	
made	all	possible	pairwise	comparisons	between	the	sampled	calves	
and	reproductive	females,	determined	how	many	mother–calf	pairs	
were	 sampled,	 and	 used	 the	mother–offspring	 kinship	 probability	
(Bravington,	Skaug,	&	Anderson,	2016)	 to	estimate	 the	number	of	
reproductive	females	at	the	time	of	the	calf	cohort's	birth.	In	this	ap-
proach,	each	candidate	mother	belonged	to	one	of	two	stage-	classes	
(subadult	or	adult),	 and	each	pairwise	comparison	either	yielded	a	
mother–calf	pair,	or	not.	Therefore,	each	pairwise	comparison	could	
be	placed	 into	one	of	four	categories:	 (1)	a	comparison	 involving	a	
subadult,	which	was	a	mother–calf	pair;	 (2)	a	comparison	involving	
a	 subadult	which	was	not	a	mother–calf	pair;	 (3)	 a	 comparison	 in-
volving	an	adult,	which	was	a	mother–calf	pair;	and	 (4)	a	compari-
son	involving	an	adult	which	was	not	a	mother–calf	pair.	Thus,	the	
pseudolikelihood	 of	 the	 observed	 data	 can	 be	 expressed	 simply	
using	a	multinomial:

where p	 corresponds	 to	 a	 vector	 containing	 the	 probabilities	 of	
each	of	the	four	possible	outcomes	for	a	given	pairwise	comparison,	
y	corresponds	to	a	vector	containing	the	frequency	of	each	of	the	
four	outcomes,	and	n	corresponds	to	the	total	number	of	pairwise	

comparisons	made	 (i.e.,	 the	sum	of	y).	The	equation	governing	the	
probability	of	each	outcome	is	displayed	in	Table 2.

We	used	numerical	maximization	to	find	the	maximum	(pseudo)
likelihood	 estimate	 of	 N̂F,	 searching	 across	 the	 range	 of	 10	 fe-
males	 to	 10	 times	 the	 number	 of	 reproductive	 females.	 Although	
the	pseudolikelihood	 is	not	a	proper	 likelihood	function,	when	the	
necessary	 assumptions	 are	met	 and	 the	 pseudolikelihood	 approx-
imates	 a	 proper	 likelihood,	 the	 95%	 confidence	 interval	 of	N̂F can 
be	approximated	using	Hessian-	based	confidence	intervals	or	other	
standard	approaches.	However,	it	is	unclear	how	well	these	approx-
imations	perform	when	the	pseudolikelihood	may	not	approximate	
a	proper	likelihood	due	to	violations	of	one	or	more	of	its	underlying	
assumptions,	as	is	the	case	under	consideration	here.	Therefore,	we	
were	also	interested	in	assessing	the	coverage	probability	of	the	cal-
culated	95%	confidence	 interval,	 so	we	computed	 the	95%	profile	
confidence	interval	of	N̂F	for	each	simulation.	We	performed	10,000	
simulations	for	each	considered	population	size	and	computed	the	
mean	N̂F	across	all	simulations	at	each	sampling	intensity,	as	well	as	
the	95%	quantile	 for	N̂F,	 the	standard	deviation,	 the	coefficient	of	
variation,	and	the	proportional	relative	bias	((̂NF − NF )∕NF).	All	sim-
ulations	and	analyses	were	performed	in	the	R	computing	environ-
ment	version	4.0.5	(R	Core	Team,	2016).

2.3  |  Case study: Tonquin herd, Alberta, Canada

2.3.1  |  Sample	collection,	DNA	analysis,	and	age	
class	determination

Our	Tonquin	case	study	utilized	data	presented	in	previous	publica-
tions	(Flasko	et	al.,	2017;	McFarlane	et	al.,	2018).	Briefly,	fecal	pellets	
were	collected	from	the	Tonquin	subpopulation	 in	Jasper	National	
Park,	 Alberta,	 Canada,	 each	winter	 from	2006	 to	 2015,	with	 two	
or	 three	 fecal	 surveys	 conducted	 annually	 between	 October	 and	
January.	 Following	DNA	extraction,	 samples	were	 amplified	 at	15	
variable	microsatellite	loci	(McFarlane	et	al.,	2018, 2021, 2022),	and	
unique	individuals	were	identified	using	the	ALLELEMATCH	package	
(Galpern	et	al.,	2012)	 in	R.	Fecal	pellets	 from	the	unique	 individu-
als	were	then	assigned	to	either	calf	or	non-	calf	(which	consists	of	
yearling,	subadult,	and	adult)	stage-	classes	in	their	first	year	of	cap-
ture	based	on	a	combination	of	fecal	pellet	dry-	weight	and	hormone	

(p| n, y) =
(
n

yi

)
p
y1
1
p
y2
2
p
y3
3
p
y4
4
,

Outcome Probability

Subadult	comparison	yields	a	mother–calf	pair bs f

NF(bs f(1−A) + bafA)

Subadult	comparison	does	not	yield	a	mother–calf	pair 1 −
bs f

NF(bs f(1−A) + bafA)

Adult	comparison	yields	a	mother–calf	pair baf

NF(bs f(1−A) + bafA)

Adult	comparison	does	not	yield	a	mother–calf	pair 1 −
baf

NF(bs f(1−A) + bafA)

Note: A	represents	the	proportion	of	adults	among	the	sampled	reproductive	(subadults	and	adults)	
females;	all	other	symbols	are	as	defined	in	Table 1.	The	denominator	of	the	fraction	represents	the	
total	expected	reproductive	output	across	all	potentially	reproductive	females.

TA B L E  2 The	probability	of	the	
possible	outcomes	from	each	pairwise	
comparison	as	used	in	the	multinomial	
likelihood.
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levels	(pregnane	for	females,	testosterone	for	males).	For	a	full	de-
scription	of	the	age-	class	determination	methods,	please	see	Flasko	
et	al.	(2017)	and	McFarlane	et	al.	(2018).	Because	the	birth	year	was	
known	for	all	individuals	initially	captured	as	calves,	their	ages	were	
known	on	any	encounters	in	subsequent	years.

2.3.2  | Mother–offspring	pair	inference

We	used	COLONY	 v2.0.6.8	 (Jones	&	Wang,	2010),	which	 uses	 a	
maximum	likelihood	framework,	to	infer	parent–offspring	relation-
ships	among	the	sampled	calves	and	non-	calves.	All	sampled	calves	
were	 input	 as	 offspring.	 Because	 individuals	 sampled	 as	 calves	
could	be	the	parent	of	a	calf	 in	 future	years,	all	 sampled	females,	
both	calves	and	non-	calves,	were	included	in	COLONY	as	candidate	
mothers.	 Although	 we	 were	 not	 directly	 interested	 in	 paternity,	
all	 sampled	males	were	 included	as	 candidate	 fathers	 to	enhance	
the	quality	of	parent-	pair	(and	thus	maternity)	inference.	COLONY	
also	allows	the	exclusion	of	certain	candidate	mothers	(or	fathers)	
from	consideration	for	maternity	(or	paternity)	of	specific	offspring	
based	on	prior	information,	such	as	age.	Therefore,	because	the	age	
of	first	reproduction	is	generally	3 years	old	for	both	sexes	(Adams	
&	Dale,	1998a, 1998b;	Eloranta	&	Nieminen,	1986),	all	 individuals	
which	were	known	to	be	younger	than	3 years	old	(owing	to	having	
been	captured	as	a	calf	 in	a	previous	year)	at	 the	 time	of	a	given	
calf's	 birth	 were	 excluded	 from	 parental	 consideration	 for	 said	
calf.	 See	Table	A1 in Appendix	 for	 the	 full	 set	 of	COLONY	 input	
parameters.

2.3.3  |  Abundance	estimation

Due	to	sample	size	concerns,	we	pooled	together	data	from	all	sam-
pling	occasions	which	occurred	within	the	same	winter	 (2–3	occa-
sions	per	winter),	 and	 treated	 it	 as	 arising	 from	a	 single,	 intensive	
sampling	event.	Although	 the	Jasper	dataset	spans	multiple	years,	
given	caribou	managers'	interest	in	using	CKMR	in	a	one-	time-	only	
sample	 design,	we	 analyzed	 the	 data	 on	 a	 year-	by-	year	 basis,	 for-
going	 all	 cross-	year	 comparisons,	 as	 they	 would	 not	 be	 available	
should	a	one-	time	sampling	design	be	implemented.	Therefore,	we	
only	included	individuals	who	were	sampled	in	the	same	year	in	our	
analysis.	Within	 a	 given	 year,	we	 counted	 the	number	of	 sampled	
calves,	the	number	of	candidate	mothers	who	were	sampled	in	the	
year	of	 interest	and	were	not	excluded	due	to	being	younger	than	
3-	year-	olds	 (hereafter	 referred	 to	 as	 ‘potential	 mothers’),	 and	 the	
number	of	mother–calf	pairs	sampled	within	said	year	as	indicated	
by	COLONY.	Upon	reaching	sexual	maturity,	female	caribou	are	ex-
pected	 to	 produce	 one	 calf	 annually	 (Bergerud,	2000).	 Given	 this	
constant	fecundity	in	combination	with	the	fact	that	we	only	evalu-
ate	kinship	comparisons	between	potential	mothers	and	calves-	of-	
the-	year,	 the	 expected	 relative	 reproductive	 output	 for	 any	 given	
potential	mother	 is	 assumed	 to	 be	 1/Nf, where Nf represents the 
reproductive	 female	 abundance	 in	 the	 offspring's	 year	 of	 birth.	TA
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6 of 14  |     MERRIELL et al.

Therefore,	 the	 number	 of	mother–calf	 pairs	 (MOt)	 found	within	 a	
given	year	t	can	be	succinctly	expressed	as

where nc,t and nf,t	 represent	 the	number	of	 sampled	 calves	 and	 the	
number	of	sampled	potential	mothers	in	year	t,	respectively,	and	Nf,t is 
the	reproductive	female	abundance	in	year	t.	Notably,	this	formulation	
treats	all	potential	mothers	as	reproductive	adults,	which	is	not	strictly	
true	because	the	potential	mothers	also	include	some	yearlings	(non-	
reproductive)	and	subadults	 (occasionally	reproductive),	which	could	
not	be	excluded	due	to	having	an	unknown	birth	year.	Although	this	in-
evitably	introduces	some	degree	of	bias	into	our	abundance	estimates,	
we	nevertheless	believe	that	this	formulation	is	a	reasonable	approxi-
mation	(See	Section	4).	We	used	the	‘binom.confint’	function	from	the	
‘binom’	package	in	R	(Dorai-	Raj,	2022)	to	estimate	Nf,t	as	well	as	its	95%	
profile	confidence	interval	for	each	year.

3  |  RESULTS

3.1  |  Simulation study

Our	 simulation	 study	 used	 the	 CKMR	 pseudolikelihood	 to	 evalu-
ate	the	accuracy	and	precision	of	 the	CKMR	abundance	estimator	
from	a	single	sampling	event.	Although	we	simulated	reproductive	
female	populations	 ranging	 in	 size	 from	50	 to	1000	 in	 increments	

of	50,	in	what	follows	we	only	present	the	results	for	six	population	
sizes	(50,	100,	250,	500,	750,	and	1000),	which	are	representative	of	
the	patterns	found	across	all	simulations.	The	mean	number	of	ob-
served	mother–offspring	pairs	increased	as	both	the	population	size	
and	the	proportion	of	 the	population	sampled	 increased	 (Table 3).	
While	 the	mean	number	of	mother–offspring	pairs	was	extremely	
low	(<1.0)	when	only	5%	of	the	population	was	sampled,	regardless	
of	population	size,	the	disparity	in	the	number	of	observed	mother–
offspring	pairs	among	the	population	sizes	grew	as	the	proportion	
of	 the	population	 sampled	 increased.	For	example,	with	only	25%	
of	the	population	sampled,	the	population	sizes	of	250	(sample	size:	
n = 63)	 and	 1000	 (n = 250)	 had	 a	 mean	 of	 4.1	 and	 16.3	 observed	
mother–offspring	pairs,	respectively;	these	grew	to	36.7	and	146.9,	
respectively,	 when	 75%	 (n = 188	 and	 n = 750,	 respectively)	 of	 the	
population	was	sampled	(Table 3).

As	 may	 be	 expected,	 our	 simulations	 indicated	 that	 both	 the	
accuracy	and	precision	of	the	abundance	estimator	 improved	with	
both	 increasing	population	 size	and	 the	proportion	of	 the	popula-
tion	sampled	(Figure 1).	Regardless	of	the	population	size,	when	very	
small	proportions	(≤10%)	of	the	population	were	sampled,	the	mean	
abundance	 estimate	 was	 biased	 high	 with	 very	 high	 uncertainty;	
the	corresponding	mean	relative	bias	was	also	quite	 large,	 ranging	
from	 0.82	 to	 8.60	 (Table 4).	 As	 the	 proportion	 of	 the	 population	
sampled	increased,	the	mean	abundance	estimate	converged	to	the	
true	value,	the	mean	proportional	relative	bias	declined	to	0,	and	the	
precision	of	 the	estimator	 improved	 (Figure 1; Table 4).	While	 the	
mean	abundance	estimates	eventually	converged	to	the	true	value	

MOt ∼ Binom

(
nc,t ∗nf ,t ,

1

Nf ,t

)
,

F I G U R E  1 The	mean	(colored	dots)	and	95%	quantile	(colored	bars)	of	the	CKMR	abundance	estimate	across	all	10,000	simulations	for	
each	proportion	of	the	population	sampled	for	selected	population	sizes.	In	each	plot,	the	dashed	gray	line	represents	the	true	reproductive	
female	abundance.
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for	all	population	sizes,	smaller	populations	required	a	larger	propor-
tion	of	the	population	to	be	sampled	before	convergence	occurred.	
For	 example,	 the	 population	 size	 of	 50	 required	 sampling	 ~65%	
(n≈33)	of	the	population	before	the	mean	proportional	relative	bias	
was	≤0.1,	indicating	the	abundance	estimate	was	within	10%	of	the	
true	value,	while	the	population	size	of	1000	only	required	sampling	
~20%	(n≈200)	of	the	population	before	achieving	the	same	level	of	
accuracy	(Table 4; Figure 1).	Interestingly,	the	median	proportional	
relative	bias	declined	faster	than	the	mean	proportional	relative	bias	
as	larger	proportions	of	the	population	were	sampled,	especially	for	
smaller	populations.	 In	 fact,	 achieving	a	median	proportional	 rela-
tive	bias	≤0.1	only	required	sampling	≤25%	of	the	population	across	
all	 considered	population	 sizes	 (Table 4).	 This	behavior	 can	be	ex-
plained	by	the	fact	that	CKMR	vastly	overestimates	the	population	
size	in	cases	where	very	few	(or	only	one)	mother–offspring	pairs	are	
found,	which	occurs	more	often	when	sampling	small	proportions	of	
small	populations,	thus	inflating	the	mean	relative	bias	while	having	
a	much	smaller	impact	on	the	median	relative	bias.

To	 evaluate	 both	 the	 accuracy	 and	 the	 precision	 of	 the	 abun-
dance	estimator	simultaneously,	we	plotted	the	mean	proportional	
relative	 bias	 of	 the	 abundance	 estimate	 against	 its	 coefficient	 of	
variation	 for	 every	 combination	 of	 population	 size	 and	 proportion	
of	the	population	sampled	(Figure 2a).	Again,	we	see	that	low	sam-
pling	proportions	lead	to	high	proportional	relative	bias	regardless	of	
the	population	size.	However,	the	points	in	the	lower-	left	region	of	
the	graph,	contained	within	the	red	box,	are	of	particular	interest,	as	
these	represent	combinations	of	population	size	and	proportion	of	
the	population	sampled,	which	yield	an	estimate	with	a	mean	pro-
portional	relative	bias	of	≤0.1	(i.e.,	within	10%	of	the	true	value)	and	
a	coefficient	of	variation	of	≤0.30.	Although	a	CV	≤0.20	is	typically	
desired,	there	may	be	some	circumstances	in	which	management	is	
willing	to	accept	a	slightly	higher	CV,	hence	why	we	used	the	thresh-
old	of	0.30	here.	There	is	a	range	of	combinations	which	yield	points	
within	this	region	of	the	graph	(Figure 2b).	For	example,	a	population	
size	of	50	requires	≥75%	(n ≥ 38)	of	the	population	to	be	sampled	to	
yield	a	mean	estimate	that	 is	both	accurate	and	precise	enough	to	
fall	within	this	region	of	the	graph,	a	population	size	of	250	requires	
≥40%	(n ≥ 100)	of	the	population	to	be	sampled,	while	a	population	
size	 of	 1000	only	 requires	 ≥20%	 (n ≥ 200)	 of	 the	 population	 to	 be	
sampled	(Figure 2b).

Lastly,	 we	 found	 that	 the	 calculated	 95%	 profile	 confidence	
interval	 computed	 in	 each	 simulation	 tended	 to	 be	 overly	 broad,	
thereby	misrepresenting	the	actual	coverage	probability.	In	fact,	for	
many	combinations	of	population	size	and	proportion	of	the	popula-
tion	sampled,	the	proportion	of	the	95%	profile	confidence	intervals	
containing	the	true	NF	across	all	10,000	simulations	was	≥99%,	even	
reaching	100%	in	some	cases	(Figure 3).

3.2  |  Case study: Tonquin herd, Alberta, Canada

The	number	of	calves	sampled	within	each	year	ranged	from	a	min-
imum	of	3	in	2015	to	a	maximum	of	11	in	2011,	and	the	number	of	TA
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potential	mothers	sampled	ranged	from	a	minimum	of	8	in	2015	to	
a	maximum	of	32	in	2006	and	2009,	while	the	number	of	mother–
calf	pairs	 found	among	the	sampled	 individuals	 ranged	from	1	 in	
2007	 to	 8	 in	 2011	 (Table 5).	 The	 performance	 of	 the	CKMR	 fe-
male	abundance	estimate	varied	across	years.	The	estimates	were	
both	inaccurate	and	imprecise	for	2006–2008	compared	to	exist-
ing	 robust-	design	 CMR	 female	 abundance	 estimates	 previously	
published	 in	McFarlane	et	al.	 (2018),	with	especially	poor	perfor-
mance	in	2007	and	2008	(Figure 4a).	The	CKMR-	based	abundance	
estimates	were	more	reasonable	and	comparable	to	the	CMR	es-
timates	for	2009–2015	and	the	precision	of	the	estimates	also	im-
proved	during	this	period	(compared	to	the	first	3 years;	Figure 4a),	
although	were	still	 relatively	 imprecise	 in	certain	years	given	the	
low	abundance	estimates	(Figure 4b).	For	example,	the	95%	profile	
confidence	interval	spanned	13–127	in	2009	(N̂F = 32)	and	7–118	in	
2012	(N̂F = 20).	The	mean	CMR-	based	female	abundance	estimate	
across	 the	10-	year	 study	period	was	29,	while	our	mean	CKMR-	
based	estimate	was	45.9	 (Table 5).	However,	 after	 excluding	 the	
first	3 years	during	which	CKMR	performed	particularly	poorly,	the	
7-	year	mean	CMR-	based	female	abundance	estimate	was	22,	while	

the	7-	year	mean	CKMR-	based	estimate	was	22.43,	highlighting	the	
improved	performance	after	the	first	3 years.

4  |  DISCUSSION

Unlike	traditional	CMR	methods,	the	CKMR	approach	does	not	rely	
on	 repeated	 capture	 events,	which,	 in	 principle,	means	 it	 could	 be	
possible	 to	generate	an	abundance	estimate	from	a	single	sampling	
event.	Caribou	managers	are	particularly	interested	in	this	possibility.	
However,	applications	of	CKMR	thus	far	have	focused	on	systems	in	
which	samples	have	been	collected	over	a	span	of	multiple	years,	al-
lowing	pairwise	comparisons	to	be	made	across	years,	thus	increasing	
the	number	of	kin	pairs	included	in	the	analysis	and	ultimately	improv-
ing	 the	 precision	 of	 the	 resulting	 abundance	 estimate.	 Fortunately,	
small	populations	have	the	advantage	that	it	may	be	feasible	to	collect	
enough	kin	pairs	for	CKMR	from	a	single	sampling	event,	something	
which	is	generally	infeasible	for	larger	populations.	To	our	knowledge,	
our	study	is	the	first	to	assess	the	suitability	of	CKMR	for	small	popu-
lations	using	samples	collected	from	a	single,	non-	invasive	sampling	

F I G U R E  2 (a)	Proportional	relative	bias	
((

N̂F − NF

)
∕NF

)
	versus	the	coefficient	of	variation	of	N̂F	for	each	combination	of	population	size	

and	proportion	of	the	population	sampled.	The	red	box	in	the	lower-	left	region	of	the	plot	represents	combinations	with	both	a	low	relative	
bias	and	a	relatively	low	(≤0.30)	coefficient	of	variation,	such	that	the	estimates	could	be	both	accurate	and	precise	enough	for	management	
purposes.	(b)	Zoomed-	in	view	of	the	region	of	the	graph	highlighted	by	the	red	box	in	(a).
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event,	 while	 also	 representing	 only	 the	 second	 manuscript	 to	 use	
CKMR	in	a	real	terrestrial	system	(Lloyd-	Jones	et	al.,	2023).

Our	simulations	demonstrate	that	the	CKMR	mother–offspring	
approach	can,	in	principle,	generate	estimates	of	reproductive	fe-
male	abundance	that	are	accurate	and	precise	enough	to	be	useful	
for	caribou	management	(i.e.,	CV ≤ 20%,	Pollock	et	al.,	1990)	from	
a	 single,	 non-	invasive	 sampling	 event,	 given	 sufficient	 sampling	
intensity.	However,	the	sampling	intensity	required	to	achieve	an	
abundance	estimate	with	both	a	sufficiently	low	proportional	rela-
tive	bias	and	CV	depends	on	the	population	size	(Figure 2).	Ideally,	
this	means	that	managers	should	have	some	idea	of	their	popula-
tion	size	prior	to	conducting	a	survey	 in	order	to	determine	how	
many	samples	are	likely	to	be	required	to	achieve	the	desired	level	
of	accuracy	and	precision.	Across	our	simulations,	the	95%	profile	
confidence	 intervals	 for	N̂F	 tended	 to	be	overly	broad,	 likely	be-
cause	 the	pseudolikelihood	underlying	 the	CKMR	approach	may	
not	 adequately	 approximate	 a	 proper	 likelihood	 function	 when	
the	 assumption	 of	 approximate	 independence	 among	 the	 pair-
wise	 comparisons	 is	 violated,	 highlighting	 the	 need	 for	 caution	
when	reporting	or	otherwise	interpreting	confidence	intervals	for	
CKMR-	based	abundance	estimates	for	small,	 intensively	sampled	
populations.

The	accuracy	and	precision	of	the	annual	CKMR-	based	abun-
dance	estimates	varied	across	years	for	our	Tonquin,	Alberta,	car-
ibou	case	study.	The	abundance	estimates	were	biased	high	with	
large	 uncertainty	 for	 2006–2008	 but	 performed	 reasonably	 in	
subsequent	 years.	 Notably,	 during	 each	 of	 the	 first	 3 years,	 the	
percentage	of	pairwise	comparisons	between	calves	and	potential	

mothers	which	 resulted	 in	 a	mother–calf	 pair	 was	<1.5%,	while	
in	all	subsequent	years,	 it	was	>2.5%,	even	reaching	≥5%	in	sev-
eral	of	 the	 later	years	of	 the	 study	period	 (Table 5),	highlighting	
the	importance	of	sampling	a	sufficient	number	of	kin	pairs.	It	has	
previously	 been	 suggested	 that	 CKMR	 studies	 should	 generally	
target	obtaining	a	minimum	of	50	kin	pairs	(Bravington,	Skaug,	&	
Anderson,	2016;	Waples	&	Feutry,	2021).	Of	course,	obtaining	50	
mother–calf	pairs	from	a	single	sampling	event	can	be	impossible	in	
certain	scenarios	depending	on	the	population	size,	as	evidenced	
by	 both	 our	 simulations	 and	 case	 study.	While	 our	 results	 indi-
cate	 that	 reasonable	abundance	estimates	can	be	obtained	from	
fewer	 than	 50	 mother–calf	 pairs	 for	 small,	 intensively	 sampled	
populations	 given	 sufficient	 sampling	 intensity,	 precision	 of	 the	
estimator,	as	measured	by	the	width	of	the	95%	confidence	inter-
val,	is	certainly	improved	with	increasing	numbers	of	mother–calf	
pairs,	 and	 therefore,	 targeting	~50	kin	pairs	 is	 still	 a	useful	heu-
ristic	where	logistically	feasible.	Additionally,	although	we	report	
the	95%	profile	confidence	 interval	for	the	abundance	estimates	
from	our	Jasper	case	study,	our	simulations	strongly	suggest	that	
the	coverage	of	this	confidence	interval	is	overly	broad	and	should	
therefore	be	viewed	with	some	caution.

While	the	CKMR-	based	abundance	estimates	are	similar	to	the	
CMR-	based	estimates	from	McFarlane	et	al.	 (2018)	from	2009	on-
ward,	 there	 are	 several	 details	 which	 should	 be	 noted.	 First,	 our	
analysis	assumed	that	all	potential	mothers	have	identical	expected	
reproductive	output.	This	is	not	strictly	true	because	we	could	not	
distinguish	between	yearlings,	subadults,	and	adults,	except	in	cases	
where	an	individual	was	previously	captured	as	a	calf	and	therefore	

F I G U R E  3 The	proportion	of	the	calculated	95%	profile	confidence	intervals	which	contain	the	true	abundance	across	all	10,000	
simulations	for	each	combination	of	population	size	and	proportion	of	the	population	sampled.
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its	 age	was	 known.	 The	 presence	 of	 non-	reproductive	 individuals	
within	the	set	of	potential	mothers	in	any	given	year	would	artificially	
increase	the	number	of	pairwise	comparisons	yielding	a	non-	kin	re-
lationship,	while	 having	 no	 impact	 on	 the	 number	 of	 comparisons	
yielding	a	mother–offspring	pair,	thereby	decreasing	the	ratio	of	kin/
non-	kin	 comparisons	 and	 ultimately	 causing	 the	 abundance	 esti-
mate	to	overestimate	the	reproductive	female	abundance	to	some	
degree.	However,	given	the	relatively	high	estimated	proportion	of	
the	population	sampled	in	each	year	(average	of	~78%	annually),	we	
are	reasonably	confident	that	the	majority	of	calves	were	sampled	in	
any	given	year,	thus	representing	samples	of	known	age	on	encoun-
ters	in	subsequent	years	(and	able	to	be	excluded	from	the	potential	
mothers	until	they	turned	3 years	old).	Furthermore,	we	expect	only	
a	relatively	small	proportion	of	the	population	in	any	given	year	to	
consist	of	yearlings;	 therefore,	we	expect	 the	number	of	 individu-
als	captured	for	the	first	time	as	yearlings,	and	thus	incorrectly	in-
cluded	 in	 the	 group	 of	 potential	mothers	 in	 any	 given	 year,	 to	 be	
small.	Nevertheless,	future	studies	could	circumvent	the	difficulties	
that	we	encountered	 in	stage-	class	assignment	through	the	devel-
opment	of	a	caribou-	specific	epigenetic	 clock	 (Czajka	et	al.,	2024; 
Lu	et	al.,	2023),	which	would	then	allow	for	the	estimation	of	each	

individual's	true	age.	Obtaining	the	true	age	of	each	individual	would	
be	particularly	advantageous	because	it	would	enable	managers	to	
retrospectively	estimate	the	abundance	for	multiple	years	from	just	
a	single	sampling	event	 instead	of	only	being	able	 to	estimate	 the	
abundance	for	 the	mothers	of	 the	current	calf	cohort,	as	we	have	
done	throughout	this	study.	Additionally,	age	information	could	also	
be	useful	for	other	management	questions,	such	as	those	related	to	
individual	fitness	levels.

Second,	 CKMR	 and	 CMR	 estimate	 similar,	 although	 slightly	
different	 parameters.	 The	 CMR-	based	 estimates	 from	 McFarlane	
et	 al.	 (2018)	 represent	 the	 total	 number	 of	 females	 (regardless	 of	
age),	which	were	physically	present	 at	 the	 time	of	 sampling,	while	
the	CKMR-	based	estimates	presented	here	represent	the	number	of	
reproductive	females	who	were	present	at	the	time	of	a	given	calf	co-
hort's	birth,	approximately	6 months	prior	to	sampling.	Because	our	
CKMR-	based	 estimates	 do	 not	 include	 non-	reproductive	 females,	
while	 the	 CMR-	based	 estimates	 do,	we	would	 expect	 our	 CKMR-	
based	estimates	to	be	smaller	than	the	CMR-	based	estimates,	which	
are	 inclusive	of	 all	 stage-	classes.	Therefore,	while	 the	mean	CMR-	
based	 abundance	 estimate	 for	 2009–2015	 and	 our	 mean	 CKMR-	
based	estimate	for	the	same	timeframe	are	virtually	identical	(22	and	

F I G U R E  4 (a)	Annual	CMR	(blue)	and	CKMR	(red)	female	abundance	estimates	and	their	associated	95%	confidence	intervals	(gray	
bars)	for	Jasper	National	Park,	Alberta,	Canada.	The	CMR	results	and	their	associated	95%	confidence	intervals	are	reported	in	tab.	A7	of	
McFarlane	et	al.	(2018).	(b)	Zoomed-	in	view	of	(a).
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22.43,	 respectively),	 this	 suggests	 that	 the	CKMR-	based	estimates	
overestimate	 the	 reproductive	 female	 abundance	 to	 some	degree.	
As	described	previously,	this	is	exactly	what	we	would	expect	to	ob-
serve	if	some	non-	reproductive	individuals	were	incorrectly	included	
in	the	set	of	potential	mothers.	While	we	maintain	that	this	was	not	
a	common	occurrence	within	this	dataset	for	the	reasons	described	
previously,	it	is	a	likely	indication	that	it	did	occur	in	some	instances.	
Additionally,	the	precision	of	the	two	abundance	estimation	methods	
is	not	perfectly	comparable.	It	is	likely	that	the	model	from	McFarlane	
et	al.	(2018)	suffered	from	convergence	or	parameter	identifiability	
issues	given	that	their	abundance	estimates	had	a	standard	error	of	
zero	in	several	years,	which	is	unlikely	to	be	an	accurate	assessment	
of	the	true	uncertainty	of	their	estimates;	meanwhile,	our	confidence	
intervals	are	likely	overly	broad,	as	noted	previously.

Lastly,	each	of	our	abundance	estimates	were	generated	using	
only	a	single	year's	data.	In	contrast,	the	abundance	estimates	from	
McFarlane	 et	 al.	 (2018)	 were	 generated	 by	 a	 robust-	design	 CMR	
model,	which	allowed	 information	within	 the	dataset	 to	be	shared	
across	years.	Of	course,	 it	 is	unsurprising	that	a	model	that	allows	
information	to	be	shared	across	years	has	greater	precision	than	a	
model	making	use	of	only	a	single	year's	data	at	a	time.	It	is	possible	
to	build	CKMR	models	which	make	use	of	data	collected	across	mul-
tiple	years,	and	this	has	been	the	focus	of	the	CKMR	literature	thus	
far.	And,	when	multiple	years	of	data	are	available	(such	as	for	our	
Jasper	dataset),	 that	 is	precisely	what	 should	be	done	 for	 realistic	
management	scenarios.	However,	given	that	some	caribou	managers	
are	interested	in	attempting	CKMR	from	a	single	sampling	event	we	
opted	to	only	make	use	of	a	single	year's	data	at	a	time,	forgoing	all	
cross-	year	comparisons.

Our	 simulations	 and	 case	 study	 demonstrate	 the	 suitability	 of	
CKMR	 for	 application	 to	 small	 caribou	 populations	 using	 samples	
collected	from	a	single,	non-	invasive	sampling	event.	While	our	re-
sults	indicate	that	it	should	be	achievable	in	practice	(subject	to	suf-
ficient	sampling	intensity),	we	urge	caution	in	generalizing	our	results	
across	systems.	First,	our	simulations	assumed	perfect	reconstruc-
tion	of	mother–calf	pairs	and	that	the	stage-	class	of	every	sampled	
individual	was	known	perfectly.	However,	in	real	systems	there	will	
be	 uncertainties	 and	 errors	 in	 the	 assignment	 of	 kinship	 relations	
from	genetic	data,	the	severity	of	which	will	depend	upon	the	type	
and	number	of	markers	used,	the	quality	and	quantity	of	the	genetic	
samples,	as	well	as	the	background	relatedness	of	individuals	in	the	
population	(Csilléry	et	al.,	2006;	Foroughirad	et	al.,	2019;	Konovalov	
&	Heg,	2008; Milligan, 2003;	Van	Horn	et	al.,	2008);	there	may	also	
be	uncertainty	and	errors	 in	the	assignment	of	stage-	class	for	cer-
tain	 individuals	 (as	 is	 likely	 the	 case	 for	 some	 individuals,	 particu-
larly	yearlings,	in	our	Jasper	caribou	case	study).	These	uncertainties	
and	errors	will	impact	the	performance	of	the	abundance	estimator.	
Additionally,	our	simulations	only	considered	the	female	portion	of	
the	population,	with	no	 consideration	of	males.	While	 this	 should	
be	sufficient	for	the	purposes	of	caribou	management,	the	particu-
larities	of	other	systems,	as	well	other	management	interests,	could	
necessitate	the	consideration	of	the	male	portion	of	the	population.	
Finally,	our	simulation	did	not	allow	for	movement	of	individuals	into	

or	out	of	the	study	area.	As	with	conventional	CMR,	the	movement	
of	individuals	could	result	in	a	biased	estimate	from	CKMR,	for	ex-
ample,	in	situations	where	processes	such	as	natal	dispersal	are	large	
relative	to	the	sampling	area,	such	that	many	of	the	offspring	pro-
duced	by	the	adults	within	 the	sampling	area	are	not	available	 for	
sampling.	While	we	do	not	expect	this	to	be	an	issue	for	boreal	car-
ibou	given	the	large	expanses	over	which	sampling	typically	occurs,	
it	could	be	more	problematic	for	other	species.	For	these	reasons,	
we	recommend	that	researchers	and	managers	conduct	a	simulation	
study	 using	 their	 target	 species'	 life	 history	 and	 behavior,	 as	well	
as	 the	anticipated	data	uncertainties,	prior	 to	attempting	a	 single-	
sample	CKMR	analysis.	Our	simulation	code	could	serve	as	a	starting	
point	for	such	an	analysis.

Close-	kin	 mark–recapture-	based	 estimation	 methods	 are	 still	
quite	new,	and	thus	far,	much	of	the	work	in	this	field	has	focused	
on	aquatic	 systems,	although	several	 recent	papers	have	explored	
CKMR	 in	 the	 context	 of	 terrestrial	 systems	 (Conn	 et	 al.,	 2020, 
Sharma	 et	 al.,	 2022,	 Larroque	 &	 Balkenhol,	 2023,	 Lloyd-	Jones	
et al., 2023,	Sévêque	et	al.,	2024).	However,	there	is	still	a	need	for	
more	work	on	CKMR	survey	design,	especially	for	terrestrial	species.	
For	example,	given	that	the	CKMR	framework	relies	on	sampling	a	
sufficient	number	of	kin	pairs,	randomly	sampling	the	population	of	
interest	may	not	be	the	optimal	approach	and	alternative	sampling	
schemes	designed	to	target	specific	cohorts/life	stages	at	different	
times	of	the	year	or	locations	may	be	required	(Bravington,	Grewe,	
&	Davies,	2016);	if	a	more	targeted	survey	design	is	implemented,	it	
is	still	important	that	the	collected	samples	be	random	with	respect	
to	kinship.	Furthermore,	the	field	would	benefit	from	investigations	
into	the	effects	of	non-	independence	of	kin	pairs	which	may	arise	
among	mother	and	offspring	prior	to	dispersal	(Jones	et	al.,	2023),	or	
among	other	kin	pairs	in	group-	living	species.

One	of	the	attractive	features	of	CKMR-	based	estimation	methods	
is	that	in	principle,	they	can	eliminate	the	need	for	multiple	sampling	
events	as	is	typically	required	by	CMR	or	SECR	approaches,	thus	rep-
resenting	a	potential	cost	savings	to	wildlife	managers.	While	our	study	
demonstrates	 the	 suitability	of	CKMR	 for	 small	 caribou	populations	
using	 samples	 collected	 from	 a	 single,	 non-	invasive	 sampling	 event,	
whether	these	cost	savings	are	realized	largely	will	depend	upon	the	
sampling	effort	required	to	obtain	a	sufficient	number	of	kin	pairs	to	
achieve	 the	 desired	 levels	 of	 accuracy	 and	precision.	 Therefore,	we	
caution	managers	to	carefully	consider	their	goals	and	objectives,	as	
well	as	their	available	resources	(personnel,	time,	money,	etc.)	and	the	
particularities	of	their	system	before	deciding	whether	a	CKMR-	based	
method	 (whether	 from	a	 single	 sampling	event	or	multiple	 sampling	
events)	is	the	appropriate	choice	for	their	management	needs.
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APPENDIX 

TA B L E  A 1 Input	settings	used	for	COLONY	parentage	
assignment.

Mating	system	I Female	polygamy

Male	polygamy

Mating	system	II With	inbreeding

Without	clone

Species Dioecious

Diploid

Length	of	run Long

Analysis	method Full-	likelihood	(FL)

Likelihood precision Very	high

Run	specifications Update	allele	frequency:	No

Sibship	scaling:	No

Number	of	runs:	5

Random	number	seed:	1234

Sibship	prior No	prior
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